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SUMMARY

Numerical computations of non-linear gravity waves are presented and the effects of mesh variations on
the results are discussed.

Waves are regarded as two-parameter families (4, A)y of arbitrary discharge Q, and computations are
carried out using a new Kantorovich algorithm.

Mesh effects are to a large extent dependent on the particular wave region under consideration. Three
such regions are identified and typical examples are computed and discussed.
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1. INTRODUCTION

Theoretical modelling of free-surface gravity waves has made remarkable advances in recent
times!™® particularly during the last decade. Such progress is due to the development and
application of numerical techniques, and the availability of the computing power to solve the
governing non-linear equations to high accuracy. A number of surprising results have been
obtained which have disproved some suppositions held true for a long time. For instance, it had
been assumed that integral quantities such as speed, energy and momentum would increase
monotonically with wave height until the highest wave is reached, that periodic solutions would
be unique, etc.

Here we are concerned with the steady free-surface gravity wave problem in two dimensions
with the physical effects of compressibility, viscosity, rotation and surface tension excluded. This
problem, although more simple, retains the full non-linearity of the free-surface boundary
condition and constitutes a challenge to the convergence, stability and accuracy of numerical
methods. More general gravity-wave problems may be dealt with only after satisfactory treatment
of this simple case. Today, it would appear as if such wave problems, particularly from the point
of view of the high accuracy achieved (order 110, see for instance Reference 3) and the new wave
properties discovered, have been completely solved. From the point of view of the numerical
techniques however, with regard to their reliability, simplicity and applicability to more general
problems of engineering as well as their scientific interest, there is still scope for further
development.

Traditionally, perturbation expansion techniques, as for example those first used by Stokes,
have for a long time dominated the field. Modern versions, such as those developed recently by
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Schwartz,2 Cokelet® and others, have made use of Pade approximates and adequately chosen
expansion parameters to sum up the series. Reported results of applications of these methods
to waves on a horizontal bed are indeed very impressive, particularly on account of the accuracy
achieved. It is stated, however, that convergence is difficult for large-amplitude waves in the
cnoidal and shallow water regions.2-® In fact, divergence occurs for a range of waves. Wiiliams®
has recently used an improved integral equation technique to compute the waves of greatest
height for the full range of wavelengths, with the exception of the highest solitary wave which
is obtained by extrapolation.

Finite element methods, after their successful performance in structural problems, have gone
a long way into the area of fluid mechanics. Their great flexibility, relative simplicity and sound
theoretical basis make finite elements a robust and promising method for fluid problems. The
utility of these methods is further enhanced by the combined use of variational methods. Since
the wave problem under consideration in this paper can be formulated variationally,” finite
element methods can be applied successfully®~!! to gravity waves on a horizontal bed, but more
importantly to other free-surface gravity flows on more general bed configurations such as steps,
weirs, spillways, etc.

In this paper we apply to the wave problem a technique!? that belongs to the family of finite
element methods. This technique is based on a variational principle’ valid for waves of all
amplitudes and wavelengths. The principal objective of the present study is, through numerical
experiments, to observe the effects that meshes may have on the computation of gravity waves.
The assessment of mesh effects is made by focusing our attention on the wave amplitude A4 for
prescribed values of the wavelength A and discharge Q. One can interpret the wave problem as
a two-parameter bifurcation problem'? with bifurcation branches (4, A), emanating from the
trivial solution at a bifurcation point 4 = 4, that can be found from the Stokesian linear theory.

Mesh effects on the computation of the curves (4, A), for a range of values of the parameters
Q and 4, particularly for the large amplitude section of the curves, will be the main theme of
this paper. The effect of mesh variations on other wave properties such as velocity, steepness,
etc., will only be considered tangentially. The mesh variations considered are mesh size (mesh
refinement) and mesh aspect ratio. Assessment of discretization errors is carried out by observing
the total head error (using the dynamic boundary condition) and by comparing results with
those of Cokelet® and the cnoidal wave theory of Benjamin and Lighthill.'*

It is found that mesh refinements are, to a large extent, dependent on the behaviour of the
branches (4, A)y, i.c. the bifurcation pattern. Three wave regions (whose precise limits are given
in Reference 13) B,, B, and B, exist (Figure 8). In B, bifurcation is to the left, i.e. the wave
amplitude A increases as wavelength decreases, for a fixed value of the discharge Q. B, constitutes a
deep-water region. In B, bifurcation is to the right, i.e. 4 increases monotonically with A, for fixed
Q. This is a shallow-water wave region. In B, bifurcation is to the right and there are turning points
at large amplitudes.

In regions B, and Bj; relatively coarse meshes may provide an accurate representation of the
curves (4, 4),, provided adequate mesh aspect ratios are observed. In B,, however, only fine
meshes can give reliable results for the curves. For waves of small to moderate amplitude, the
lower part of the curves, coarse meshes prove to be generally satisfactory.

For wave properties such as steepness and velocity, fine meshes must be used in all three
regions B,, B, and B, particularly if double values of solutions are to be detected near to the
breaking point.

The aspect ratio R is another important mesh parameter in respect of which the wave regions
B,, B, and B, have quite distinct requirements. The correct value of R should be chosen before
performing mesh refinements. Inadequate R values can give a poor representation of the curves
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(4, 4)q even for the case of limiting small amplitude waves.!5 Generally, fine resolution in the
y-direction is required in B,, whereas in B this resolution requirement is on the x-direction.

2. STATEMENT OF THE PROBLEM

In this paper we are concerned with the effect of meshes on the numerical computation of
large-amplitude surface gravity waves on a horizontal bed. Flows are assumed to be two-
dimensional, steady, incompressible and irrotational. We also assume that effects of viscosity
and surface tension can be neglected.

It can be shown’ that solutions of the wave problem as stated here are stationary points of
the functional

b(x) + h(x)

Joa(h(x), ¥ (x,y)) = j . f G(VY)* — y)dxdy, 1)

b(x)
with constraints

¥ =0 on y=b(x): the bed,

Y =0 on y=>b(x)+ h(x): the free surface. @

All quantities in (1) and (2) have been non-dimensionalized with respect to length H,, the
total head or stagnation level, and time (H,/g)*/2, where g denotes the acceleration due to gravity.

In equation (1) @ denotes the discharge and A denotes the length of the flow domain. Both Q
and 2 are parameters of the problem whose values are prescribed. The arguments h(x) and ¥(x y)
of J denote the position of the free surface and the stream function, respectively. ¥ (x, y) governs
the internal flow field distribution. Both h(x) and y(x, y) are to be computed.

Boundary conditions at the inlet and outlet boundaries arise as natural conditions in the
variational formulation,” i.e. 8y/0n = 0, which is consistent with the requirement of normal flow
there.

From symmetry considerations, the inlet and outlet boundaries may conveniently be made
to coincide with a trough and crest or vice versa. This results in a reduced computational domain
of length /2= L.

As in Reference 13 we choose, here, the wave amplitude A as the representative quantity
characterizing a computed wave for prescribed values of the parameters Q and 4. A is defined,
as usual, as half the wave height. An alternative amplitude A, may be defined as the height of
the wave crest h.., above that of the asymptotic level Dy. A and A, are not identical, but
they both represent adequately the wave profile, at least for waves of finite A.

Most computed results will be presented through curves (4, A), where Q and A are prescribed
and A emerges as.a result of computation. Each point on the curve represents a wave of amplitude
A, wavelength A and discharge Q, which is held constant.

Each curve (4, 4), emanates from the asymptotic level D, at A = A, and rises until the highest
possible wave of discharge Q is reached. The problem may thus be interpreted as a two-parameter
bifurcation problem,'* where Dy, is the trivial solution from which the bifurcation branch (4, 4),
emanates at the bifurcation point A = 4,.

Coarse or distorted meshes have a significant effect on the computation of the curves (4, A),
(sets of waves of constant discharge Q). Even in the vicinity of A = ,, where the solution can be
obtained from linear theory, the inaccuracy resulting from the use of inadequate meshes could
be large, as reported in Reference 15.

The main theme of this paper is to report on the effect that meshes have on the computation
of branches (4, )y, for values of @, as the amplitude becomes larger.
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We do not consider the problem of computing explicitly the turning points. This is a problem
that requires special treatment!® and is outside the scope of the present work.

Concerning the fundamental aspects of bifurcation theory the interested reader should consult
other sources.!’

3. COMPUTATIONAL DETAILS AND MESH CONSIDERATIONS

The wave computations of this paper were carried out using a new Kantorovich method,
the details of which are reported elsewhere.? In essence, the method consists of taking N terms of
a Kantorovich expansion for the functional J given by equation (1). By using the stationary
conditions for J one obtains a set of N non-linear ordinary differential equations in x for the
position of N streamlines including that of the free surface.

The method could also be viewed as a semidiscretization of the flow domain in the y direction
into N streamlayers bounded by N streamlines whose position is to be computed.

The resulting boundary value problem is then discretized in x by approximating derivatives
by central differences at M equally spaced stations along x.

The set of N x M non-linear algebraic equations is solved by a Newton—Raphson iteration
procedure. The algorithm was implemented in double precision on the AMDAHL 470 Computer
of the University of Leeds. The algorithm is stable and convergence is fast.

An illustrative example is shown in Figure 1 for 0% =0-2521952 and A =2:3935979 using
N = 48 streamlines (48 terms in the Kantorovich expansion) and M = 80 stations. The computed
amplitude is A =0-1629698. As indicated previously, computations are performed for half a
wavelength and b(x) = — 1 in equation (2) (horizontal bed).

The choice of the number of terms N in the expansion (or the number of streamlines) and
the number of stations M completely determines a discretization of the two-dimensional flow
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Figure 1. Computed large amplitude wave for 0% =0-2521952 and 4 = 2-3935979 using a 48 x 80 mesh
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Figure 2. Typical element in final discretization of a two-dimensional flow domain

domain. Hence we speak of an N x M mesh and this is the meaning of mesh that is adopted
in this paper.

Elements are quadrilateral regions as depicted in Figure 2. For a given N x M mesh the length
Ax = L/(M — 1) is constant, but Ay varies from element to element and within an element as
shown in Figure 2.

The horizontal length Ay also varies from iteration to iteration when solving the non-linear
problem to find the positions of the N unknown streamlines. Segments AB and CD in Figure 2
are approximations to streamlines and thus the variation of Ay in the iteration procedure.

For the case of a limiting small amplitude wave the N streamlines are (almost) uniformly
distributed in the y direction and therefore Ay~ D,/N where D, is the asymptotic level.!? As the
amplitude A4 increases Ay increases for elements near the vertical transversal through the wave
crest and decreases for elements near the transversal through the wave trough. Nevertheless, the
constant (Ay), = D,/N is an adequate indication of the possible Ay values to be expected in both
small and large amplitude waves.

In this paper we consider two types of mesh variations, namely mesh refinement and aspect
ratio variation. We shall not consider mesh gradation other than that resulting from the
self-adjusting character of the algorithm being employed.

The adequacy of a given N x M mesh will depend on the wave region being considered.
Theoretical observations'® indicate that short waves, for instance, exhibit an exponential
variation of horizontal velocity with depth. Adequate simulation of such waves will therefore
require a fine resolution in the y direction. The implication is that the number of streamlines N
should be large in some sense. It is also known that long waves will be less demanding on the
number N, for the variation of the horizontal velocity component u = u(x, y) with y is less
pronounced than for shorter waves. In fact the assumption u = u(x) is a good approximation in
the long wave region.!81°

For our numerical experiments we have chosen examples that are typical of the various wave
regions.

4. MESH VARIATIONS

Here we report on the effect that mesh variations (aspect ratio variation and mesh refinements)
have on the computed waves. The effects to be assessed are those on the wave amplitude 4, i.c.
on the curves (4, A)y. Comparison of computed results with those of other investigators'# will
be carried out for some of the examples reported on in this paper. Also, an indirect assessment
of errors will be performed by checking the dynamic boundary condition on the free surface, as
done by Betts and Assaat.!!
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4.1. Effect on curves (4, A),

As indicated in section 2 the curves (4, 4),, which are an indication of the computed wave
profiles and thus wave amplitudes, may be, to a large extent, dependent on the particular N x M
mesh being used. This mesh dependency will be illustrated here for various examples.

Example 1. Q% =01400463. The corresponding value of the asymptotic level is D, =
09166667 and the bifurcation point is at 1, = 1:04723.13

This example was first computed by Southwell and Vaisey! in 1946 using relaxation methods.
In their algorithm they prescribed A and computed 2. We do the opposite. They computed ten
points (waves) on the curve (4, A), starting from the highest wave. Their results gave an
overestimated solution for the infinitesimal amplitude wave (the bifurcation point). In a previous
paper'® we analysed in some detail the behaviour of the curves (4, A), near the limiting
small-amplitude wave, for various meshes. Here we shall pay attention to the larger-amplitude
wave part of the same curves.

In Figure 3 we illustrate the computed curves (4, A)q for three different meshes: 18 x 10, 36 x 20
and 72 x 40. The computed points of Southwell and Vaisey are also shown there. Several
comments on the results of Figure 3 are in order. First we note that the curves (4, 4), do not
vary significantly with the mesh refinements. In fact the two finest meshes (36 x 20 and 72 x 40)
give curves that are almost indistinguishable for most of the A-range considered. Differences are
more noticeable near the highest wave and near the infinitesimal amplitude wave (4 = 4,), whose
position in the Figure was computed from the linear theory.

The curve computed with the finest mesh (72 x 40) exhibits an inflexion point near the
stagnation level. This feature, which was not detected by the coarser meshes, appears to be
common to curves (4, A), in the deep water region B, where bifurcation is to the left.!>

The results of Southwell and Vaisey' for this example, also plotted in Figure 3, differ
considerably from our three solution curves. Curiously, the differences are larger for the
smaller-amplitude waves than for the larger-amplitude waves. Their infinitesimal-amplitude wave,
obtained by extrapolation, is 6 per cent higher than the exact solution given by the Stokesian
linear theory. Their solution for the highest wave, however, is probably very accurate. This can
be seen from our results and those of Cokelet.® In section 4.3 we give more details about
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Figure 3. Computed curves (4, 4), for Q% = 0-1400463 using three meshes
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comparison of results for this and other highest waves and the way we compute them. It is
nevertheless illustrative to indicate here the computed values for the wavelength 4, of the highest
wave (crest at stagnation level). The solution of Reference 1, quoted to 2 decimal places, is
Am = 0-88; our solution is 4, = 0-8810526 using the 72 x 40 mesh.

Example 2. Q% =02691909. In this case the asymptotic level is Dy =0-7771403 and A, =
3-0339155. This example lies in an intermediate wave region B, where the curves (4, A), bifurcate
to the right and have a right turning point at amplitudes less than those of the corresponding
highest waves. In Figure 4 we show a set of computed wave profiles for various wavelength
values starting from 4 = 4, which gives the zero-amplitude wave. As 1 is increased the amplitude
A increases. There is a range of 4 values that give double solutions within the range of physical
interest, i.e. for a given value of 4 in this range there are two solutions of the same wavelength,
and the same discharge Q, but of different amplitudes.

The effect of mesh refinements on the computed curve (4, A),, is significant in this example. As
for example 1, we consider here three different meshes, namely 10 x 30, 20 x 60 and 40 x 120.
The corresponding computed curves are illustrated in Figure 5. The actual computed points
(waves) are also shown there.

The curves are almost indistinguishable for waves ranging from the zero-amplitude wave to
those of moderately large amplitude. As the amplitude continues to increase the difference
becomes dramatic. Note for instance that the estimated position of the turning point is about
4 when using the 40 x 120 mesh, about 5 when using the coarser mesh (20 x 60) and about 9 for
the coarsest mesh (10 x 30). In preliminary computations for this example using the 10 x 30
mesh we considered the possibility of finding the highest wave by extrapolation, since at that
time we did not know the behaviour of the curve near the stagnation level. The resuits of Figure 5
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Figure 4. Computed free surface profiles for @2 = 0-2691909 and various values of A using a 20 x 60 mesh. Double values of
solutions occur
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Figure 5. Computed curves (4, A), for Q% = 0-2691909 using three meshes

give a clear warning about the use of extrapolation procedures to calculate large-amplitude wave
properties, at least in B,.

Computations for this example are very accurate for the small-amplitude waves for all the
three meshes considered as compared with the linear theory. For waves with crests near the
stagnation level, only fine meshes will give accurate results. Comparisons will be made later in
section 4.3.

Example 3. Q% = 0296295. The corresponding asymptotic level for this example is D, =
0-6674865 and i, =39-6492024. Branching is to the right, ie. the amplitude A increases
monotonically with the wavelength A.

For this shallow-water example the effect of meshes on the computed curve (4, 4), is not
significant. In Table I computed results for three mesh configurations are shown. The
wave-amplitude A there is A = (hyese — Mirougn)/2. Variations of the alternative amplitude
Ay =h.. — Do with mesh refinements are found to be practically negligible.

From Table I one can see that the effect of refining the mesh is to reduce the wave amplitude
very slightly. The effect is shown in the 7th decimal place and only for the higher waves, at the
first refinement level. The finest mesh (12 x 360) leaves the results of the 6 x 180 mesh unaltered,
except for the case A =47-6.

For this example we also performed computations using N = 1, i.e. a single layer. This would
correspond to a shallow-water model, as discussed in Reference 19. It can be anticipated that
results should not differ significantly from those in Table I obtained from multilayer meshes
(N > 1). In Table II we show computed results using four one-layer meshes.

Computed values from the single-layer meshes of Table II do not differ considerably from
those of Table 1. The difference appears in the 6th decimal place. For instance, the case 4 = 46-7
has solutions for the wave height 24 with errors of + 0-07 per cent relative to the finest mesh
solution of Table I. More about this will be said later when we compare results against the
Cnoidal wave theory'* and discuss the aspect ratio influence.

4.2. Assessment of errors

In this section we carry out an indirect assessment of errors and discuss the suitability of
meshes for the different wave regions. First we shall assess errors by checking the dynamic
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Table 1. Computed values 24 x 10®> for Q?=
0-296295 using three meshes. Amplitude is

A= (hcresl - hlrough)/2

Mesh
A 3 x90 6 x 180 12 x 360
404 06124 06124 06124
41-2 09135 09134 09134
420 1-1185 1-1184 1-11184
42-8 1-2764 1-2763 1-2763
43-6 1-4048 1-4047 1-4047
444 1-5122 1-5122 1-5122
452 1-6041 1-6040 1-6040
460 1-6836 1-6835 1-6835
47-6 1-8147 1-8147 1-8147
480 1-8428 1-8427 1-8427

Table II. Computed values 24 x 10° for Q? = 0-296295 using
four one-layer meshes

Mesh

A 1 x30 1x90 1x 180 1 x 360
404 06150 0-6061 0-6053 0-6051
420 1-1200 1-1155 1-1155 1-1150
436 1-4060 1-4027 1-4024 1-4024
452 1-6052 1-6025 1-6023 1-6022
46-8 1-7544 1-7520 1-7518 1-7517
47-6 1-8158 1-8136 1-8134 1-8133
484 1-8704 1-8683 1-8681 1-8681
556 2:1743 2-1726 21724 2-1724

boundary condition on the free surface as done by Betts and Assaat.*! This procedure, although
indirect, provides an idea of the self-consistency of the computed results. The other way we shall
assess errors here will be by comparing some of our computed results with those of other
investigators. To this end we shall consider three examples of highest waves and compare our
computed results with those of Cokelet.> Also we shall compare some other examples with the
cnoidal wave theory of Benjamin and Lighthill.1*

Dynamic boundary condition. The stationary conditions of the functional J given by equation (1)
give a second boundary condition (the dynamic boundary condition) on the free surface
y= — 14 h(x). In our units and frame of reference this takes the form

Ul +y=0, 3)

where U, denotes the surface velocity.
An estimate of errors is given by evaluating the left hand side of equation (3). This corresponds
to a total head error and will be denoted by AH.
In the approximation of the present paper the velocity U = (4, v) within an element, such as
that illustrated in Figure 2, is given by*?2
oW

u=—5=—Q/Nhi, )



488 E. F. TORO

0
O Qe — Wi~ YVNB),
h; denotes the element width Ay, y;,_, denotes the position of the base of the element and
denotes differentiation with respect to x. For a surface element equations (4) reduce to

u=—Q/(Nhy),
v = Qyn/(Nhy).

In assessing the total head error AH we have taken U,, the velocity at the free surface, as
that within a surface element and given by equations (5). Such value for U, will result in an
exaggerated error AH. This can be seen, for instance, by considering U, at the wave crest where
v=0. U, depends only on the horizontal velocity component u which decreases with depth.
Thus the value for U, from equations (5) is somewhat larger than the exact value at the surface.
Similarly, at the wave trough U,, as given by (5), is somewhat smaller than the exact value,
since u increases with depth.

For example 1 of section 4.1 (Q? = 0-1400463) we computed the estimated total head error
AH at various stations along the wave surface using three different meshes (9 x 6, 18 x 11 and
36 x 21).

In Figure 6 we illustrate the variation of AH along the free surface for a wave of wavelength
A =093. The error AH is observed to decrease as the mesh is refined. By halving the mesh size,
in both directions, (AH),,,, is approximately halved. This is illustrated by observing values at
the crest and trough in Figure 6.

Clearly errors are largest at the wave trough and at the wave crest. From the comments
following equations (5) it is reasonable to suppose that the resulting error wave (Figure 6) has
an amplified amplitude resulting from the estimated surface velocities.

Numerical results also show that the maximum total head error (AH),,,, increases as the wave
amplitude increases, i.e. errors are largest for the highest waves. In Figure 7 we plot AH at the
trough (negative) and at the crest (positive) against the wave height 24 for three meshes. Again,
by performing mesh refinements |AH| is decreased, as one would expect.

The estimated total head errors AH at the free surface for the example considered are similar
to those of Betts and Assaat.!! This is not surprising since their finite element algorithm is of
similar accuracy to our discretized Kantorovich method. Their tabulated results (their Table
6.1) refer to different wave examples lying more towards the shallow-water wave region and
thus no direct comparison of results can be made here. Nevertheless, their first example

)
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Figure 6. Estimated total head error AH for Q2 = 0-1400463, A = 0-93 using three meshes
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Figure 7. Plot of (AH),,g, and (AH),,. against wave height 24 for Q% = 01400463 using three meshes

(exp(—d,) =0-2) being the closest to ours, could be taken for an indirect comparison. Their
10 x 6 mesh (in our notation) gives (AH),,,, = 0-038; our 9 x 6 mesh gives (AH),,,, = 0032 for a
wave close to the highest (see Figure 7). Reductions in (AH),,,, by mesh refinements are observed
to be similar to ours. It should be pointed out however, that the meaning of a mesh N x M for
the examples being compared are not equivalent in the sense that deep and shallow water waves
have different mesh requirements (e.g. aspect ratio) for a desired accuracy.

Highest waves. Here we assess discretization errors and effects of mesh refinements for three
highest-wave examples. A comparison with the computed results of Cokelet® is carried out in
an indirect fashion. A reliable curve-fitting technique involving cubic splines is applied to Cokelet’s
ten-point data for waves of greatest height. Direct evaluation at the desired values of the
independent variable will give appropriate values for comparison.

The quantities subject to comparison are the ratio wavelength to depth A/D and the ratio wave
height to wavelength 24/4 (wave steepness). We take the relative wavelength A/D as the
independent variable and the wave steepness as the dependent quantity subject to comparison.
In Table III we show our computed results for the wave steepness for given relative wavelengths
and the corresponding interpolated values from Cokelet’s data. The chosen wave examples have
relative wavelength less than about six and lie in the wave region where the 110-term series of
Cokelet is most accurate.

In Table III it can be seen that the relative error is reduced by half when the mesh size in
both directions is halved, a result that was also observed for the estimated total head error in

Table III. Comparison of results of wave steepness 24/4 for waves of greatest
height

24/2 24/2
02 NxM A/D this paper Cokelet

0-1400463 18 x 10 09785806 0-1523002 0-1431783
36 x 20 0-9690463 0-1485016 0-1431765
72 x 40 09741159 0-1448542 0-1431775

0-2521952 24 x 40 31887330 0-1381528 0-1346546
48 x 80 3-1744905 0-1362655 0-1347619

0-2691909 20 x 60 7-1969956 0-0955807 0-0942090
40 x 120  5-8624666 0-1080545 0-1074530
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section 4.2. In the first example with Q2 =0-1400463 the relative error is 6-4 per cent for the
coarsest mesh (18 x 10) and 1-17 per cent for the finest mesh (72 x 40). Similar variations are
observed in the other examples. Our results are consistently higher than those of Cokelet, with
agreement tending to improve as the relative wavelength increases. The second example,
Q2 = 02521952 gives a relative error of 11 per cent for the finest mesh, whereas the third example
gives an error of 0-6 per cent when using the finest mesh (40 x 120).

Results show that the algorithm being used here is capable of giving results of comparable
accuracy to the highly accurate results of Cokelet. Fine meshes must be used, however.

It would appear as if our algorithm were more adequate for wave ranging from the intermediate
wave region to the long wave region than for waves in the deep water region. Waves in the
latter region require fine meshes, in particular more layers (larger N), in order to model the
exponential variation of velocities; and larger N values increase the bandwidth of the Jacobian
matrix. Thus it is more expensive, in storage and CPU time, to compute accurately deep-water
waves than it is to compute other waves.

Cnoidal waves. Here we compare some of our computed results with the cnoidal wave theory
of Benjamin and Lighthill.'# In this theory the wave profile is given in terms of a non-linear
ordinary differential equation involving three parameters, namely the total head, the discharge
and the momentum.

In order to compare results directly we solved their non-dimensionalized equation (23)
numerically, using central differences and treating the resulting non-linear algebraic equations
in a similar fashion to that of the present algorithm.!?

In Table IV we show our computed results and those obtained from Benjamin and Lighthill’s
equation for Q2 = 0-2945430.

Our results in Table IV were obtained using an 18 x 100 mesh, i.e. 18 layers and 100 stations.
The cnoidal wave equation of Reference 14 was also solved using 100 stations. Our amplitudes
are slightly larger than those of Benjamin and Lighthill, less than 1 per cent of relative error.
It is interesting to note, however, that results compare very well for the position of the wave
crest. For instance, for A=12-0 our result is y., =07274687 and that of Reference 14 is
Verest = 07267286 with a relative error of 0-1 per cent. For A = 8-0 the wave crest relative error
is only 0-08 per cent. Our profiles have slightly deeper troughs than those of Benjamin and
Lighthill.

It is not certain whether the results evaluated from the theory of Reference 14 and given in
Table 1V are less accurate than our own, since we may have introduced an error in these results
when supplying the parameter S (the horizontal momentum corrected for pressure forces and
divided by the density) calculated from our computed results. In principle, however, our algorithm
should be more accurate, for it represents are full (ideal) non-linear theory. By observing the
mesh refinement effects for example 3 of section 4.1 one can see that for a fixed number of

Table IV. Comparison of results with cnoidal wave theory

Amplitude A Percentage
A A/D this paper  Reference 14 error
80 11-71661 0-0349368 00346478 08
9-0 13-29546 0-0397768 0-0394348 0-86
10-0 14-87026 0-0421978 0-0418339 0-86
11-0 16-44300 0-0435263 0-0431512 0-86

12-0 18-:01475 0-0442930 0-0439094 0-87
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stations M, increasing the number of layers N has the effect of increasing the amplitude A. This
appears to be a general feature in the shallow water region. Thus one can think of our 18 x 100
mesh for the present example as representing the correct trend. The third order theory of Reference
14 could be closely represented by taking N =3 (three terms in the Kantorovich expansion) in
our model. This would have the effect of decreasing our computed amplitude values.

5. DISCUSSION

In this paper we have given special consideration to the problems of (i) computing the bifurcation
curves (4, 4), and (ii) analysing the effects that mesh variations may have on the computation
of the curves. Other wave properties, such as steepness, velocity, etc., may not have identical
mesh requirements as the bifurcation curves (4, A)q.

Three wave regions B, B, and B, can be identified, each one having its own mesh requirements.
Results presented here indicate that curves (4, 4), in B, are not significantly affected by mesh
refinements (Figure 3). All three meshes considered in example 1 (section 4.1) in the region B,
give curves that are almost indistinguishable from each other throughout the entire range of
wave amplitudes. A careful examination of results, however, indicates that the finest mesh used
detects an inflexion point at a distance short of the highest wave. The existence of such an
inflexion point appears to be a common feature to all curves (4, 4), in B, as illustrated by other
computed results reported on in Reference 13.

Adequate representation of other wave properties in B, (e.g. steepness, velocity) necessitates
fine meshes. For instance, the well-known? existence of a maximum for the velocity at nearly
breaking point is confirmed in the present study, but only when using the finest mesh, in
example 1.

The indirect assessment of total head errors carried out in section 4.2 gives another indication
of the level of mesh refinements that are necessary for computing reliable results. Wave crests
and troughs are seen to require better resolution than other wave zones and special mesh
refinement/gradation would appear to be needed. We have not done this since the algorithm
used in the present work assumes a semi-uniform mesh throughout the computational domain.
Departure from uniformity results from the self-adjusting feature of the streamlines in the model.
The work of Betts and Assaat!! shows, however, that mesh gradation, as a substitute for straight
mesh refinement, does not greatly increase accuracy.

The comparison of results with those of Cokelet® for waves of greatest height (section 4.2) gives
a more precise idea of the relationship between mesh size and accuracy.

The aspect ratio R =(M — 1)/N (where M is the number of stations and N the number of
streamlines) is, in addition to the mesh sizes Ax and Ay, an important parameter in the discretiza-
tion of the flow domain. As with Ax and Ay the region B,, B, and B; have different requirements
on the mesh parameter R.

Meshes for computing curves (4, 4), in B, should provide a good resolution in the y-direction,
which roughly means that more importance should be given to the number of streamlines N
than to the number of stations in the model. This is partially explained by the way in which the
horizontal component of velocity u varies with depth in the region B, of deep-water waves. For
example 1, R=1 for all meshes and 0049 < Ax <0-058 for the coarsest mesh used and
(Ay)o =~ 0-051; Ax/(Ay), ~ 1. Notice that Ax depends on the wavelength, for a fixed N x M mesh.
Numerical experiments for the lower part of the curve (4, 4),, reported elsewhere,'® show that
for values of R greater than about £ results in loss of accuracy and the solution curve could give an
infinitesimal wave that is far too long when compared with the exact theory at 4 = A,,.

We now turn to curves (4, A), that belong to the intermediate wave region B,; they have
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turning points and, in contrast to curves in B,, are very sensitive to mesh refinements. Example
2 {section 4.1) in this region illustrates the difference very clearly (Figure 5). It is pointed out,
however, that mesh refinement effects are practically negligible for the smaller amplitude waves,
i.c. the lower part of the curves. For the upper part of the curves the effect is striking. Consider
for instance the location of the critical value of the parameter A where the turnning point occurs.

Other wave properties also require fine meshes in order to be accurately represented. This is
well illustrated by the comparison of results for highest waves in Table III. The finest mesh used
there gives a wave steepness that is 1 per cent higher than Cokelets’s solution.

The aspect ratio R for example 2 in the region B, is about 3 (for all meshes used); for the
coarsest mesh (12 x 20) (Ay), =~ 0:065 and 0-16 < Ax < 0-4, i.e. Ay/Ax is significantly less than one.

Curves (4, 4), in the wave region B;, where bifurcation is to the right, are not greatly affected
by mesh refinements. The computed results for example 3 illustrate this well; for these, as observed
in Table 1, the mesh refinement effects are practically negligible. The aspect ratio for this example
is 30 and, for the coarsest mesh, (Ay), ~ 0222 and 045 < Ax < 0-54. Fine resolution in the
y-direction appears not to be required when computing curves in B;, in contrast to curves in
B,. Again this may be partially explained by the way in which the horizontal component of
velocity u varies with depth in the shallow water region.

Table II illustrates the fact that in the extreme case of a model with one layer (N = 1) we
still obtain solution curves that are reasonably accurate when compared with solutions obtained
from models including more layers (N > 1). In fact, as discussed in Reference 19, the case N =1
constitutes a shallow-water (non-linear) approximation.

Changes in the values of the aspect ratio R produce changes in the results, as one would
expect, but such an effect for example 3 is not dramatic. The results for R = 30, 90, 180 and 360
are illustrated in Table II. A careful comparison of the results of Tables I and II suggests that
the most accurate solution curve 12 x 30 mesh would lie somewhere between those obtained
with the 1 x 30 and 1 x 90 meshes. It would appear, therefore, that by increasing R to values
180 and 360 one would spoil the solution.

Stagnation leve!

Wave height

o

Figure 8. Sketch of transition bifurcation branches defining B,,B, and B,
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5. CONCLUSIONS

The computational technique used in this paper is capable of producing accurate results for
waves of all amplitudes and all finite wavelengths.

The effect of mesh refinements on the solution curves (4, 4), is dependent upon the wave region
under consideration. Three regions B,, B, and B, are identified. Curves in B, are not particularly
sensitive to mesh refinements; the same is true for curves in B,. Curves in the intermediate wave
region B,, however, are very sensitive to mesh refinements; this is specially the case for the
larger-amplitude waves, in the vicinity of turning points.

The aspect ratio R is found to be an important mesh parameter. Results indicate that adequate
values of R should increase monotonically as one moves from B, towards B,.

Other wave properties, such as wave steepness and velocity, always require fine meshes. For
the smaller-amplitude waves, however, regardless of the wave region, coarse meshes can provide
reasonable solutions for these wave properties as well as for the curves (4, 4),.
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