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SUMMARY 

Numerical computations of non-linear gravity waves are presented and the effects of mesh variations on 
the results are discussed. 

Waves are regarded as two-parameter families (A, A)Q of arbitrary discharge Q, and computations are 
carried out using a new Kantorovich algorithm. 

Mesh effects are to a large extent dependent on the particular wave region under consideration. Three 
such regions are identified and typical examples are computed and discussed. 
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1. INTRODUCTION 

Theoretical modelling of free-surface gravity waves has made remarkable advances in recent 
times'-6 particularly during the last decade. Such progress is due to the development and 
application of numerical techniques, and the availability of the computing power to solve the 
governing non-linear equations to high accuracy. A number of surprising results have been 
obtained which have disproved some suppositions held true for a long time. For instance, it had 
been assumed that integral quantities such as speed, energy and momentum would increase 
monotonically with wave height until the highest wave is reached, that periodic solutions would 
be unique, etc. 

Here we are concerned with the steady free-surface gravity wave problem in two dimensions 
with the physical effects of compressibility, viscosity, rotation and surface tension excluded. This 
problem, although more simple, retains the full non-linearity of the free-surface boundary 
condition and constitutes a challenge to the convergence, stability and accuracy of numerical 
methods. More general gravity-wave problems may be dealt with only after satisfactory treatment 
of this simple case. Today, it would appear as if such wave problems, particularly from the point 
of view of the high accuracy achieved (order 110, see for instance Reference 3) and the new wave 
properties discovered, have been completely solved. From the point of view of the numerical 
techniques however, with regard to their reliability, simplicity and applicability to more general 
problems of engineering as well as their scientific interest, there is still scope for further 
development. 

Traditionally, perturbation expansion techniques, as for example those first used by Stokes, 
have for a long time dominated the field. Modern versions, such as those developed recently by 
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Schwartz,' Cokelet, and others, have made use of Pade approximates and adequately chosen 
expansion parameters to sum up the series. Reported results of applications of these methods 
to waves on a horizontal bed are indeed very impressive, particularly on account of the accuracy 
achieved. It is stated, however, that convergence is difficult for large-amplitude waves in the 
cnoidal and shallow water regions.233 In fact, divergence occurs for a range of waves. Williams6 
has recently used an improved integral equation technique to compute the waves of greatest 
height for the full range of wavelengths, with the exception of the highest solitary wave which 
is obtained by extrapolation. 

Finite element methods, after their successful performance in structural problems, have gone 
a long way into the area of fluid mechanics. Their great flexibility, relative simplicity and sound 
theoretical basis make finite elements a robust and promising method for fluid problems. The 
utility of these methods is further enhanced by the combined use of variational methods. Since 
the wave problem under consideration in this paper can be formulated ~ariat ional ly ,~ finite 
element methods can be applied successfully'-' to gravity waves on a horizontal bed, but more 
importantly to other free-surface gravity flows on more general bed configurations such as steps, 
weirs, spillways, etc. 

In this paper we apply to the wave problem a technique', that belongs to the family of finite 
element methods. This technique is based on a variational principle' valid for waves of all 
amplitudes and wavelengths. The principal objective of the present study is, through numerical 
experiments, to observe the effects that meshes may have on the computation of gravity waves. 
The assessment of mesh effects is made by focusing our attention on the wave amplitude A for 
prescribed values of the wavelength A and discharge Q. One can interpret the wave problem as 
a two-parameter bifurcation problem13 with bifurcation branches ( A ,  A)Q emanating from the 
trivial solution at a bifurcation point A = A. that can be found from the Stokesian linear theory. 

Mesh effects on the computation of the curves (A, A)@ for a range of values of the parameters 
Q and A, particularly for the large amplitude section of the curves, will be the main theme of 
this paper. The effect of mesh variations on other wave properties such as velocity, steepness, 
etc., will only be considered tangentially. The mesh variations considered are mesh size (mesh 
refinement) and mesh aspect ratio. Assessment of discretization errors is carried out by observing 
the total head error (using the dynamic boundary condition) and by comparing results with 
those of Cokelet3 and the cnoidal wave theory of Benjamin and Lighthill.14 

I t  is found that mesh refinements are, to a large extent, dependent on the behaviour of the 
branches (A, A)Q,  i.e. the bifurcation pattern. Three wave regions (whose precise limits are given 
in Reference 13) B,, B, and B, exist (Figure 8). In B, bifurcation is to the left, i.e. the wave 
amplitude A increases as wavelength decreases, for a fixed value of the discharge Q. B, constitutes a 
deep-water region. In B, bifurcation is to the right, i.e. A increases monotonically with A, for fixed 
Q. This is a shallow-water wave region. In B, bifurcation is to the right and there are turning points 
at large amplitudes. 

In regions B, and B, relatively coarse meshes may provide an accurate representation of the 
curves @,A&, provided adequate mesh aspect ratios are observed. In B,, however, only fine 
meshes can give reliable results for the curves. For waves of small to moderate amplitude, the 
lower part of the curves, coarse meshes prove to be generally satisfactory. 

For wave properties such as steepness and velocity, fine meshes must be used in all three 
regions B,, B, and B,, particularly if double values of solutions are to be detected near to the 
breaking point. 

The aspect ratio R is another important mesh parameter in respect of which the wave regions 
B, , B, and B, have quite distinct requirements. The correct value of R should be chosen before 
performing mesh refinements. Inadequate R values can give a poor representation of the curves 
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@,A) ,  even for the case of limiting small amplitude waves.” Generally, fine resolution in the 
y-direction is required in B,, whereas in B, this resolution requirement is on the x-direction. 

2. STATEMENT OF THE PROBLEM 

In this paper we are concerned with the effect of meshes on the numerical computation of 
large-amplitude surface gravity waves on a horizontal bed. Flows are assumed to be two- 
dimensional, steady, incompressible and irrotational. We also assume that effects of viscosity 
and surface tension can be neglected. 

It can be shown’ that solutions of the wave problem as stated here are stationary points of 
the functional 

JQ,l(h(x), $(x, y ) )  = (1) 

with constraints 

$ = Q on y = b(x): the bed, 
$ = 0 on y = b(x) + h(x): the free surface. 

All quantities in (1) and (2) have been non-dimensionalized with respect to length H,, the 
total head or stagnation level, and time (Ho/g)”2 ,  where g denotes the acceleration due to gravity. 

In equation (1) Q denotes the discharge and A denotes the length of the flow domain. Both Q 
and A are parameters of the problem whose values are prescribed. The arguments h(x) and $(x y) 
of J denote the position of the free surface and the stream function, respectively. $(x,y) governs 
the internal flow field distribution. Both h(x) and $(x,y) are to be computed. 

Boundary conditions at the inlet and outlet boundaries arise as natural conditions in the 
variational formulation,’ i.e. d$/dn  = 0, which is consistent with the requirement of normal flow 
there. 

From symmetry considerations, the inlet and outlet boundaries may conveniently be made 
to coincide with a trough and crest or vice versa. This results in a reduced computational domain 
of length A/2 = L. 

As in Reference 13 we choose, here, the wave amplitude A as the representative quantity 
characterizing a computed wave for prescribed values of the parameters Q and A. A is defined, 
as usual, as half the wave height. An alternative amplitude A ,  may be defined as the height of 
the wave crest h,,,,, above that of the asymptotic level Do. A and A ,  are not identical, but 
they both represent adequately the wave profile, at least for waves of finite A. 

Most computed results will be presented through curves (A, A)Q where Q and A are prescribed 
and A emerges as a result of computation. Each point on the curve represents a wave of amplitude 
A,  wavelength A and discharge Q, which is held constant. 

Each curve (A, A ) ,  emanates from the asymptotic level Do at A = A, and rises until the highest 
possible wave of discharge Q is reached. The problem may thus be interpreled as a two-parameter 
bifurcation problem,13 where Do is the trivial solution from which the bifurcation branch (A, A)Q 
emanates at the bifurcation point A = A,. 

Coarse or distorted meshes have a significant effect on the computation of the curves (A, A) ,  
(sets of waves of constant discharge Q). Even in the vicinity of A = A,, where the solution can be 
obtained from linear theory, the inaccuracy resulting from the use of inadequate meshes could 
be large, as reported in Reference 15. 

The main theme of this paper is to report on the effect that meshes have on the computation 
of branches @,A),,  for values of Q, as the amplitude becomes larger. 
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We do not consider the problem of computing explicitly the turning points. This is a problem 

Concerning the fundamental aspects of bifurcation theory the interested reader should consult 
that requires special treatment16 and is outside the scope of the present work. 

other sources.17 

3. COMPUTATIONAL DETAILS AND MESH CONSIDERATIONS 

The wave computations of this paper were carried out using a new Kantorovich method, 
the details of which are reported elsewhere.I2 In essence, the method consists of taking N terms of 
a Kantorovich expansion for the functional J given' by equation (1). By using the stationary 
conditions for J one obtains a set of N non-linear ordinary differential equations in x for the 
position of N streamlines including that of the free surface. 

The method could also be viewed as a semidiscretization of the flow domain in the y direction 
into N streamlayers bounded by N streamlines whose position is to be computed. 

The resulting boundary value problem is then discretized in x by approximating derivatives 
by central differences at  M equally spaced stations along x. 

The set of N x M non-linear algebraic equations is solved by a Newton-Raphson iteration 
procedure. The algorithm was implemented in double precision on the AMDAHL 470 Computer 
of the University of Leeds. The algorithm is stable and convergence is fast. 

An illustrative example is shown in Figure 1 for Q2 = 0.2521952 and 1 = 2.3935979 using 
N = 48 streamlines (48 terms in the Kantorovich expansion) and M = 80 stations. The computed 
amplitude is A = 01629698. As indicated previously, computations are performed for half a 
wavelength and b(x )  = - 1 in equation (2) (horizontal bed). 

The choice of the number of terms N in the expansion (or the number of streamlines) and 
the number of stations M completely determines a discretization of the two-dimensional flow 

0-  
0 1 2 3 

Wavelength A 

Figure 1. Computed large amplitude wave for QZ = 0.2521952 and A = 2.3935979 using a 48 x 80 mesh 
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Figure 2. Typical element in final discretization of a two-dimensional flow domain 

domain. Hence we speak of an N x M mesh and this is the meaning of mesh that is adopted 
in this paper. 

Elements are quadrilateral regions as depicted in Figure 2. For a given N x M mesh the length 
Ax = L/(M - 1) is constant, but Ay varies from element to element and within an element as 
shown in Figure 2. 

The horizontal length Ay also varies from iteration to iteration when solving the non-linear 
problem to find the positions of the N unknown streamlines. Segments AB and CD in Figure 2 
are approximations to streamlines and thus the variation of Ay in the iteration procedure. 

For the case of a limiting small amplitude wave the N streamlines are (almost) uniformly 
distributed in the y direction and therefore A y z  D , / N  where Do is the asymptotic 1 e ~ e l . I ~  As the 
amplitude A increases By increases for elements near the vertical transversal through the wave 
crest and decreases for elements near the transversal through the wave trough. Nevertheless, the 
constant (Ay), = D o / N  is an adequate indication of the possible Ay values to be expected in both 
small and large amplitude waves. 

In this paper we consider two types of mesh variations, namely mesh refinement and aspect 
ratio variation. We shall not consider mesh gradation other than that resulting from the 
self-adjusting character of the algorithm being employed. 

The adequacy of a given N x M mesh will depend on the wave region being considered. 
Theoretical observations' indicate that short waves, for instance, exhibit an exponential 
variation of horizontal velocity with depth. Adequate simulation of such waves will therefore 
require a line resolution in the y direction. The implication is that the number of streamlines N 
should be large in some sense. It is also known that long waves will be less demanding on the 
number N ,  for the variation of the horizontal velocity component u = u(x, y) with y is less 
pronounced than for shorter waves. In fact the assumption u = u(x) is a good approximation in 
the long wave r e g i ~ n . ' ~ . ' ~  

For our numerical experiments we have chosen examples that are typical of the various wave 
regions. 

4. MESH VARIATIONS 

Here we report on the effect that mesh variations (aspect ratio variation and mesh refinements) 
have on the computed waves. The effects to be assessed are those on the wave amplitude A, i.e. 
on the curves (A, A)Q. Comparison of computed results with those of other  investigator^^.'^ will 
be carried out for some of the examples reported on in this paper. Also, an indirect assessment 
of errors will be performed by checking the dynamic boundary condition on the free surface, as 
done by Betts and Assaat." 
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4.1. Effect on curves (A, A)Q 

As indicated in section 2 the curves ( I , A ) Q ,  which are an indication of the computed wave 
profiles and thus wave amplitudes, may be, to a large extent, dependent on the particular N x M 
mesh being used. This mesh dependency will be illustrated here for various examples. 

Example 1. Q 2  = 0.1400463. The corresponding value of the asymptotic level is D, = 
091 66667 and the bifurcation point is at I ,  = 1.04723.13 

This example was first computed by Southwell and Vaisey' in 1946 using relaxation methods. 
In their algorithm they prescribed A and computed A. We do the opposite. They computed ten 
points (waves) on the curve ( I , A ) Q  starting from the highest wave. Their results gave an 
overestimated solution for the infinitesimal amplitude wave (the bifurcation point). In a previous 
paper15 we analysed in some detail the behaviour of the curves (A,A)Q near the limiting 
small-amplitude wave, for various meshes. Here we shall pay attention to the larger-amplitude 
wave part of the same curves. 

In Figure 3 we illustrate the computed curves ( I ,  A)Q for three different meshes: 18 x 10,36 x 20 
and 72 x 40. The computed points of Southwell and Vaisey are also shown there. Several 
comments on the results of Figure 3 are in order. First we note that the curves (A,A)Q do not 
vary significantly with the mesh refinements. In fact the two finest meshes (36 x 20 and 72 x 40) 
give curves that are almost indistinguishable for most of the krange considered. Differences are 
more noticeable near the highest wave and near the infinitesimal amplitude wave ( I  = A,), whose 
position in the Figure was computed from the linear theory. 

The curve computed with the finest mesh (72 x 40) exhibits an inflexion point near the 
stagnation level. This feature, which was not detected by the coarser meshes, appears to be 
common to curves (A,A)Q in the deep water region B,, where bifurcation is to the left.13 

The results of Southwell and Vaisey' for this example, also plotted in Figure 3, differ 
considerably from our three solution curves. Curiously, the differences are larger for the 
smaller-amplitude waves than for the larger-amplitude waves. Their infinitesimal-amplitude wave, 
obtained by extrapolation, is 6 per cent higher than the exact solution given by the Stokesian 
linear theory. Their solution for the highest wave, however, is probably very accurate. This can 
be seen from our results and those of C ~ k e l e t . ~  In section 4.3 we give more details about 
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Figure 3. Computed curves for Q' = 0.1400463 using three meshes 
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comparison of results for this and other highest waves and the way we compute them. It is 
nevertheless illustrative to indicate here the computed values for the wavelength A, of the highest 
wave (crest at stagnation level). The solution of Reference 1, quoted to 2 decimal places, is 
A, = 0438; our solution is A, = 04810526 using the 72 x 40 mesh. 

Example 2. Q2 = 0.2691909. In this case the asymptotic level is Do = 0.7771403 and A. = 
3.0339155. This example lies in an intermediate wave region B, where the curves (A, A)Q bifurcate 
to the right and have a right turning point at amplitudes less than those of the corresponding 
highest waves. In Figure 4 we show a set of computed wave profiles for various wavelength 
values starting from A = A,, which gives the zero-amplitude wave. As A is increased the amplitude 
A increases. There is a range of A values that give double solutions within the range of physical 
interest, i.e. for a given value of A in this range there are two solutions of the same wavelength, 
and the same discharge Q, but of different amplitudes. 

The effect of mesh refinements on the computed curve (A, A)Q is significant in this example. As 
for example 1, we consider here three different meshes, namely 10 x 30, 20 x 60 and 40 x 120. 
The corresponding computed curves are illustrated in Figure 5. The actual computed points 
(waves) are also shown there. 

The curves are almost indistinguishable for waves ranging from the zero-amplitude wave to 
those of moderately large amplitude. As the amplitude continues to increase the difference 
becomes dramatic. Note for instance that the estimated position of the turning point is about 
4 when using the 40 x 120 mesh, about 5 when using the coarser mesh (20 x 60) and about 9 for 
the coarsest mesh (10 x 30). In preliminary computations for this example using the 10 x 30 
mesh we considered the possibility of finding the highest wave by extrapolation, since at that 
time we did not know the behaviour of the curve near the stagnation level. The results of Figure 5 

"1 

0.5 
Wavelength X 

I I I I I I 1 

0 4 2 3 4 5 6 

Figure 4. Computed free surface profiles for Q' = 0.2691909 and various values of 1 using a 20 x 60 mesh. Double values of 
solutions occur 
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Figure 5. Computed curves @,A)* for QZ = 0.2691909 using three meshes 

give a clear warning about the use of extrapolation procedures to calculate large-amplitude wave 
properties, at least in B,. 

Computations for this example are very accurate for the small-amplitude waves for all the 
three meshes considered as compared with the linear theory. For waves with crests near the 
stagnation level, only fine meshes will give accurate results. Comparisons will be made later in 
section 4.3. 

Example 3. Q2 = 0.296295. The corresponding asymptotic level for this example is Do = 
0.6674865 and lo = 39.6492024. Branching is to the right, i.e. the amplitude A increases 
monotonically with the wavelength 1. 

For this shallow-water example the effect of meshes on the computed curve (1, A)Q is not 
significant. In Table I computed results for three mesh configurations are shown. The 
wave-amplitude A there is A = (h,,,,, - htrough)/2. Variations of the alternative amplitude 
A, = h,,,,, - Do with mesh refinements are found to be practically negligible. 

From Table I one can see that the effect of refining the mesh is to reduce the wave amplitude 
very slightly. The effect is shown in the 7th decimal place and only for the higher waves, at the 
first refinement level. The finest mesh (12 x 360) leaves the results of the 6 x 180 mesh unaltered, 
except for the case 1 = 47.6. 

For this example we also performed computations using N = 1, i.e. a single layer. This would 
correspond to a shallow-water model, as discussed in Reference 19. It can be anticipated that 
results should not differ significantly from those in Table I obtained from multilayer meshes 
( N  > 1). In Table I1 we show computed results using four one-layer meshes. 

Computed values from the single-layer meshes of Table 11 do not differ considerably from 
those of Table I. The difference appears in the 6th decimal place. For instance, the case 1 = 46.7 
has solutions for the wave height 2A with errors of f0.07 per cent relative to the finest mesh 
solution of Table I. More about this will be said later when we compare results against the 
Cnoidal wave theoryI4 and discuss the aspect ratio influence. 

4.2.  Assessment of errors 

In this section we carry out an indirect assessment of errors and discuss the suitability of 
meshes for the different wave regions. First we shall assess errors by checking the dynamic 
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Table 1. Computed values 2A x lo3 for Q2 = 
0.296295 using three meshes. Amplitude is 

A = ( L s t  - htrouah)/2 

Mesh 
I 3 x90  6 x 180 12x  360 

40.4 
41.2 
42.0 
42.8 
43.6 
44.4 
45.2 
460 
47.6 
48.0 

06124 
0.9135 
1.1 185 
1.2764 
1.4048 
1.5122 
1.6041 
1.6836 
1.8147 
1.8428 

06124 
0.9134 
1.1184 
1.2763 
1.4047 
1.5122 
1.6040 
1.6835 
1.8147 
1.8427 

0.6124 
0.9 134 
1.1184 
1.2763 
1.4047 
1.5122 
1.6040 
1.6835 
1.8147 
1.8427 

Table 11. Computed values 2A x lo3 for Q2 = 0.296295 using 
four one-layer meshes 

Mesh 
1 1 x 30 1 x90  1 x 180 1 x 360 

40.4 
42.0 
43.6 
45.2 
468 
47.6 
48.4 
55-6 

06150 
1.1200 
1.4060 
1.6052 
1.7544 
1.8158 
1.8704 
2.1 743 

0.606 1 
1.1155 
1.4027 
1.6025 
1.7520 
1.8136 
1.8683 
2.1 726 

06053 
1.1155 
1.4024 
1.6023 
1.7518 
1.8134 
1.868 1 
2.1 724 

0.605 1 
1.1 150 
1.4024 
1.6022 
1.7517 
1.8133 
1.868 1 
2.1 724 

boundary condition on the free surface as done by Betts and Assaat." This procedure, although 
indirect, provides an idea of the self-consistency of the computed results. The other way we shall 
assess errors here will be by comparing some of our computed results with those of other 
investigators. To this end we shall consider three examples of highest waves and compare our 
computed results with those of C ~ k e l e t . ~  Also we shall compare some other examples with the 
cnoidal wave theory of Benjamin and Lighthill.I4 

Dynamic boundary condition. The stationary conditions of the functional J given by equation (1) 
give a second boundary condition (the dynamic boundary condition) on the free surface 
y = - 1 + h(x). In our units and frame of reference this takes the form 

(3) 

An estimate of errors is given by evaluating the left hand side of equation (3). This corresponds 

In the approximation of the present paper the velocity U = (u, u) within an element, such as 

3u: + y = 0, 
where Us denotes the surface velocity. 

to a total head error and will be denoted by AH. 

that illustrated in Figure 2, is given by" 
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hi denotes the element width By, y i - l  denotes the position of the base of the element and 
denotes differentiation with respect to x. For a surface element equations (4) reduce to 

( 5 )  
= - QMNh,), 
= Q ~ k A N h i v ) .  

In assessing the total head error AH we have taken Us, the velocity at the free surface, as 
that within a surface element and given by equations (5). Such value for Us will result in an 
exaggerated error AH. This can be seen, for instance, by considering Us at the wave crest where 
u = 0. Us depends only on the horizontal velocity component u which decreases with depth. 
Thus the value for Us from equations ( 5 )  is somewhat larger than the exact value at the surface. 
Similarly, at the wave trough Us, as given by (5), is somewhat smaller than the exact value, 
since u increases with depth. 

For example 1 of section 4.1 ( Q Z  = 0.1400463) we computed the estimated total head error 
AH at various stations along the wave surface using three different meshes (9 x 6, 18 x 11 and 
36 x 21). 

In Figure 6 we illustrate the variation of AH along the free surface for a wave of wavelength 
1 = 0.93. The error AH is observed to decrease as the mesh is refined. By halving the mesh size, 
in both directions, (AH),,,ax is approximately halved. This is illustrated by observing values at 
the crest and trough in Figure 6. 

Clearly errors are largest at the wave trough and at the wave crest. From the comments 
following equations (5) it is reasonable to suppose that the resulting error wave (Figure 6) has 
an amplified amplitude resulting from the estimated surface velocities. 

Numerical results also show that the maximum total head error (AH),,,ax increases as the wave 
amplitude increases, i.e. errors are largest for the highest waves. In Figure 7 we plot AH at the 
trough (negative) and at the crest (positive) against the wave height 2A for three meshes. Again, 
by performing mesh refinements I AH I is decreased, as one would expect. 

The estimated total head errors AH at the free surface for the example considered are similar 
to those of Betts and Assaat." This is not surprising since their finite element algorithm is of 
similar accuracy to our discretized Kantorovich method. Their tabulated results (their Table 
6.1) refer to different wave examples lying more towards the shallow-water wave region and 
thus no direct comparison of results can be made here. Nevertheless, their first example 

AH 

Figure 6. Estimated total head error AH for Q2 = 0.1400463, 1 = 0.93 using three meshes 
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Figure 7. Plot of (AH),rough and (AH),,,,, against wave height 2A for Q2 = 0.1400463 using three meshes 

(exp ( -  d,) = 0-2) being the closest to ours, could be taken for an indirect comparison. Their 
10 x 6 mesh (in our notation) gives (AH)max = 0.038; our 9 x 6 mesh gives (AH)max = 0.032 for a 
wave close to the highest (see Figure 7). Reductions in (AH)max by mesh refinements are observed 
to be similar to ours. It should be pointed out however, that the meaning of a mesh N x M for 
the examples being compared are not equivalent in the sense that deep and shallow water waves 
have different mesh requirements (e.g. aspect ratio) for a desired accuracy. 

Highest waves. Here we assess discretization errors and effects of mesh refinements for three 
highest-wave examples. A comparison with the computed results of Cokelet3 is carried out in 
an indirect fashion. A reliable curve-fitting technique involving cubic splines is applied to Cokelet’s 
ten-point data for waves of greatest height. Direct evaluation at the desired values of the 
independent variable will give appropriate values for comparison. 

The quantities subject to comparison are the ratio wavelength to depth A/D and the ratio wave 
height to wavelength 2A/A (wave steepness). We take the relative wavelength A/D as the 
independent variable and the wave steepness as the dependent quantity subject to comparison. 
In Table 111 we show our computed results for the wave steepness for given relative wavelengths 
and the corresponding interpolated values from Cokelet’s data. The chosen wave examples have 
relative wavelength less than about six and lie in the wave region where the 110-term series of 
Cokelet is most accurate. 

In Table 111 it can be seen that the relative error is reduced by half when the mesh size in 
both directions is halved, a result that was also observed for the estimated total head error in 

Table 111. Comparison of results of wave steepness 2AfI for waves ofgreatest 
height 

2 A /A 2AfI 
Q’ N x M  I f  D this paper Cokelet 

0.1400463 18 x 10 0.9785806 0.1523002 0.1431783 
36 x 20 0.9690463 01485016 0.1431765 
72 x 40 0.9741159 01448542 0.1431775 

0.2521952 24 x 40 3.1887330 01381528 0.1346546 
48 x 80 3.1744905 0.1362655 01347619 

0.2691909 20 x 60 7.1969956 0.0955807 00942090 
40 x 120 5.8624666 0.1080545 0.1074530 
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section 4.2. In the first example with Q’ = 0.1400463 the relative error is 6.4 per cent for the 
coarsest mesh (18 x 10) and 1.17 per cent for the finest mesh (72 x 40). Similar variations are 
observed in the other examples. Our results are consistently higher than those of Cokelet, with 
agreement tending to improve as the relative wavelength increases. The second example, 
Q 2  = 0.2521952 gives a relative error of 1.1 per cent for the finest mesh, whereas the third example 
gives an error of 0.6 per cent when using the finest mesh (40 x 120). 

Results show that the algorithm being used here is capable of giving results of comparable 
accuracy to the highly accurate results of Cokelet. Fine meshes must be used, however. 

It would appear as if our algorithm were more adequate for wave ranging from the intermediate 
wave region to the long wave region than for waves in the deep water region. Waves in the 
latter region require fine meshes, in particular more layers (larger N), in order to model the 
exponential variation of velocities; and larger N values increase the bandwidth of the Jacobian 
matrix. Thus it is more expensive, in storage and CPU time, to compute accurately deep-water 
waves than it is to compute other waves. 

Cnoidal waves. Here we compare some of our computed results with the cnoidal wave theory 
of Benjamin and Lighthill.I4 In this theory the wave profile is given in terms of a non-linear 
ordinary differential equation involving three parameters, namely the total head, the discharge 
and the momentum. 

In order to compare results directly we solved their non-dimensionalized equation (23) 
numerically, using central differences and treating the resulting non-linear algebraic equations 
in a similar fashion to that of the present algorithm.” 

In Table IV we show our computed results and those obtained from Benjamin and Lighthill’s 
equation for Q2 = 0.2945430. 

Our results in Table IV were obtained using an 18 x 100 mesh, i.e. 18 layers and 100 stations. 
The cnoidal wave equation of Reference 14 was also solved using 100 stations. Our amplitudes 
are slightly larger than those of Benjamin and Lighthill, less than 1 per cent of relative error. 
It is interesting to note, however, that results compare very well for the position of the wave 
crest. For instance, for A =  12.0 our result is y,,,,, =0.7274687 and that of Reference 14 is 
ycres, = 0.7267286 with a relative error of 0.1 per cent. For A = 8.0 the wave crest relative error 
is only 0.08 per cent. Our profiles have slightly deeper troughs than those of Benjamin and 
Lighthill. 

It is not certain whether the results evaluated from the theory of Reference 14 and given in 
Table IV are less accurate than our own, since we may have introduced an error in these results 
when supplying the parameter S (the horizontal momentum corrected for pressure forces and 
divided by the density) calculated from our computed results. In principle, however, our algorithm 
should be more accurate, for it represents are full (ideal) non-linear theory. By observing the 
mesh refinement effects for example 3 of section 4.1 one can see that for a fixed number of 

Table IV. Comparison of results with cnoidal wave theory 

Amplitude A Percentage 
1 AID this paper Reference 14 error 

8.0 11.71661 0.0349368 0.0346478 08  
9.0 13.29546 0-0397768 0.0394348 0-86 

10.0 14.87026 00421978 00418339 0-86 
11.0 1644300 0.0435263 0.0431512 086 
12.0 18.01475 00442930 0.0439094 0.87 
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stations M ,  increasing the number of layers N has the effect of increasing the amplitude A.  This 
appears to be a general feature in the shallow water region. Thus one can think of our 18 x 100 
mesh for the present example as representing the correct trend. The third order theory of Reference 
14 could be closely represented by taking N = 3 (three terms in the Kantorovich expansion) in 
our model. This would have the effect of decreasing our computed amplitude values. 

5. DISCUSSION 

In this paper we have given special consideration to the problems of (i) computing the bifurcation 
curves (A, A),  and (ii) analysing the effects that mesh variations may have on the computation 
of the curves. Other wave properties, such as steepness, velocity, etc., may not have identical 
mesh requirements as the bifurcation curves (A, A)@ 

Three wave regions B,, B, and B, can be identified, each one having its own mesh requirements. 
Results presented here indicate that curves in B, are not significantly affected by mesh 
refinements (Figure 3). All three meshes considered in example 1 (section 4.1) in the region B, 
give curves that are almost indistinguishable from each other throughout the entire range of 
wave amplitudes. A careful examination of results, however, indicates that the finest mesh used 
detects an inflexion point at a distance short of the highest wave. The existence of such an 
inflexion point appears to be a common feature to all curves (A, A) ,  in B, as illustrated by other 
computed results reported on in Reference 13. 

Adequate representation of other wave properties in B, (e.g. steepness, velocity) necessitates 
fine meshes. For instance, the well-known, existence of a maximum for the velocity at nearly 
breaking point is confirmed in the present study, but only when using the finest mesh, in 
example 1. 

The indirect assessment of total head errors carried out in section 4.2 gives another indication 
of the level of mesh refinements that are necessary for computing reliable results. Wave crests 
and troughs are seen to require better resolution than other wave zones and special mesh 
refinement/gradation would appear to be needed. We have not done this since the algorithm 
used in the present work assumes a semi-uniform mesh throughout the computational domain. 
Departure from uniformity results from the self-adjusting feature of the streamlines in the model. 
The work of Betts and Assaat" shows, however, that mesh gradation, as a substitute for straight 
mesh refinement, does not greatly increase accuracy. 

The comparison of results with those of Cokelet3 for waves of greatest height (section 4.2) gives 
a more precise idea of the relationship between mesh size and accuracy. 

The aspect ratio R = ( M  - 1)/N (where M is the number of stations and N the number of 
streamlines) is, in addition to the mesh sizes Ax and Ay, an important parameter in the discretiza- 
tion of the flow domain. As with Ax and Ay the region B, , B, and B, have different requirements 
on the mesh parameter R. 

Meshes for computing curves (A, A) ,  in B, should provide a good resolution in the y-direction, 
which roughly means that more importance should be given to the number of streamlines N 
than to the number of stations in the model. This is partially explained by the way in which the 
horizontal component of velocity u varies with depth in the region B, of deep-water waves. For 
example 1, R = for all meshes and 0049 < Ax < 0-058 for the coarsest mesh used and 
( A Y ) ~  N 0.051; Ax/(Ay), N 1. Notice that Ax depends on the wavelength, for a fixed N x M mesh. 
Numerical experiments for the lower part of the curve (A, A),, reported elsewhere," show that 
for values of R greater than about 5 results in loss of accuracy and the solution curve could give an 
infinitesimal wave that is far too long when compared with the exact theory at A =  ;lo. 

We now turn to curves (A,A), that belong to the intermediate wave region B,; they have 
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turning points and, in contrast to curves in B,, are very sensitive to mesh refinements. Example 
2 (section 4.1) in this region illustrates the difference very clearly (Figure 5). It is pointed out, 
however, that mesh refinement effects are practically negligible for the smaller amplitude waves, 
i.e. the lower part of the curves. For the upper part of the curves the effect is striking. Consider 
for instance the location of the critical value of the parameter A where the turnning point occurs. 

Other wave properties also require fine meshes in order to be accurately represented. This is 
well illustrated by the comparison of results for highest waves in Table 111. The finest mesh used 
there gives a wave steepness that is 1 per cent higher than Cokelets's solution. 

The aspect ratio R for example 2 in the region B, is about 3 (for all meshes used); for the 
coarsest mesh (12 x 20) ( A Y ) ~  N 0065 and 0.16 < Ax < 0.4, i.e. Ay/Ax is significantly less than one. 

Curves (A, A)a in the wave region B,, where bifurcation is to the right, are not greatly affected 
by mesh refinements. The computed results for example 3 illustrate this well; for these, as observed 
in Table I, the mesh refinement effects are practically negligible. The aspect ratio for this example 
is 30 and, for the coarsest mesh, ( A Y ) ~  N 0.222 and 0.45 < Ax < 054. Fine resolution in the 
y-direction appears not to be required when computing curves in B,, in contrast to curves in 
B, . Again this may be partially explained by the way in which the horizontal component of 
velocity u varies with depth in the shallow water region. 

Table I1 illustrates the fact that in the extreme case of a model with one layer ( N  = 1) we 
still obtain solution curves that are reasonably accurate when compared with solutions obtained 
from models including more layers ( N  > 1). In fact, as discussed in Reference 19, the case N = 1 
constitutes a shallow-water (non-linear) approximation. 

Changes in the values of the aspect ratio R produce changes in the results, as one would 
expect, but such an effect for example 3 is not dramatic. The results for R = 30, 90, 180 and 360 
are illustrated in Table 11. A careful comparison of the results of Tables I and I1 suggests that 
the most accurate solution curve 12 x 30 mesh would lie somewhere between those obtained 
with the 1 x 30 and 1 x 90 meshes. It would appear, therefore, that by increasing R to values 
180 and 360 one would spoil the solution. 
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5. CONCLUSIONS 

The computational technique used in this paper is capable of producing accurate results for 
waves of all amplitudes and all finite wavelengths. 

The effect of mesh refinements on the solution curves (A, A)Q is dependent upon the wave region 
under consideration. Three regions B, , B, and B, are identified. Curves in B, are not particularly 
sensitive to mesh refinements; the same is true for curves in B,. Curves in the intermediate wave 
region B,, however, are very sensitive to mesh refinements; this is specially the case for the 
larger-amplitude waves, in the vicinity of turning points. 

The aspect ratio R is found to be an important mesh parameter. Results indicate that adequate 
values of R should increase monotonically as one moves from B, towards B,. 

Other wave properties, such as wave steepness and velocity, always require fine meshes. For 
the smaller-amplitude waves, however, regardless of the wave region, coarse meshes can provide 
reasonable solutions for these wave properties as well as for the curves (A, A)a .  
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